A Current Assessment of the Nature of PM_{2.5} in Steubenville, Ohio, Using SCAMP Monitoring Data

Ohio Air Quality and Coal Research Symposium
Athens, Ohio
December 3, 2004

D. P. Connell, S. E. Winter, J. A. Withum

CONSOL Energy Inc. Research & Development South Park, Pennsylvania

Why Steubenville?

- Most polluted of the Harvard Six Cities
 - Mean $PM_{2.5}$ Concentration = 29.6 μ g/m³, 1979-1985
 - Extensive PM_{2.5} data record
- Major changes have occurred
 - Steubenville-Weirton MSA lost 4,200 manufacturing jobs in 1990s (decline of steel industry)
 - Population decreased by 7.4% in 1990s
- Likely a nonattainment area under PM_{2.5} NAAQS

The Steubenville Comprehensive Air Monitoring Program (SCAMP)

- Two-year comprehensive program for monitoring PM_{2.5} and co-pollutants
- Steubenville, Ohio, and surrounding region
- May 2000 May 2002
- Two major study components:
 - Indoor/Personal
 - Personal sampling of children and elderly volunteers
 - Indoor sampling in participants' homes
 - Outdoor
 - Participants' homes
 - Central site in Steubenville
 - Four remote sites located at cardinal compass points around Steubenville

SCAMP Outdoor Ambient Goals

- Compare urban PM_{2.5} concentration / composition with remote PM_{2.5} concentration / composition (determined using FRM)
- Study associations among PM_{2.5}, copollutants, and weather conditions
- Provide a comprehensive database for use in epidemiological and transport studies and in compliance program development

Steubenville Site

- PM_{2.5} FRM
 - Mass (1/1 days⁻¹)
 - lons (1/4)
 - Elements in WS Fraction (1/4)
- PM_{2.5} Speciation Sampler
 - EC, OC (1/4)
 - Elements in Acid-Digestible Fraction (1/4)
- PM_{2.5} TEOM
 - Mass (continuous)
- PM₁₀ FRM
 - Mass (1/1)
 - lons (1/4)
 - Elements in WS Fraction (1/4)

- FRM or FEM Gas Analyzers
 - SO₂, CO, NO_x, O₃ (continuous)
- 10-m Meteorological Tower
 - Weather Conditions (continuous)
- Burkard Volumetric Spore Trap
 - Pollen and Mold Spores (1/1)

Steubenville PM_{2.5} Concentration / Composition

May 2000 - May 2002

Seasonal Variability

Spatial Variability

Intersite Coefficients of Divergence Based Upon 21 PM_{2.5} Components

"Background"
Sites

$$CD_{jk} = \sqrt{\frac{1}{p} \sum_{i=1}^{p} \left(\frac{x_{ij} - x_{ik}}{x_{ij} + x_{ik}} \right)^{2}}$$

Local Source Contributions

PM_{2.5} and Major Components

Local Source Contributions

Elements in the Water-Soluble Fraction

	% ST > BG	Loc. (ng/m³)	Loc. (% of BG)
Al	71	4.8	49
As	73	0.66	43
Ba	79	0.7	65
Cd	71	0.10	31
Ca	73	28	46
Со	43	-0.004	-10
Cu	59	0.7	31
Fe	71	11.8	106
Pb	69	3.1	78

	% ST > BG	Loc. (ng/m³)	Loc. (% of BG)
Mg	79	18	145
Mn	83	4.5	154
Ni	47	0.1	11
K	59	16	21
Se	54	-0.44	-9
Na	73	19	32
Sn	38	-0.017	-9
V	63	0.44	66
Zn	75	25.5	140

Gas and Weather Percentiles On Highest / Lowest PM_{2.5} Days

Seasonally Dependent Correlations

 $R^2 = 0.03$ m = 0.16 $R^2 = 0.52$ m = 0.53

Diurnal Variability

PM_{2.5} Episode – Hourly Data January 26 – January 30, 2002

PM_{2.5} Episode – Hourly Data January 26 – January 30, 2002

PM_{2.5} Episode – Hourly Data July 30 – August 4, 2001

PM_{2.5} Composition During Episodes

Ions, Carbon, Elements in Water-Soluble Fraction

Summary

- Average PM_{2.5} concentration in Steubenville has decreased by more than 10 μg/m³ since Six Cities Study; still more than 3 μg/m³ above annual NAAQS (based on 2000-2002 data)
- Sulfate (31.3 wt%) and organic material (25.0 wt%) are the major components of PM_{2.5} in Steubenville
- Local sources on average contribute an estimated 4.6 μg/m³ to Steubenville's PM_{2.5} concentration
 - Sulfate, Nitrate, and Ammonium account for about 2 μg/m³
 - Among elements within the water-soluble fraction, Mg, Mn, Zn, and Fe show the greatest percent urban increment
- PM_{2.5} concentrations were positively associated with CO, NO_x, and SO₂ concentrations
 - Associations between PM_{2.5} and some gaseous pollutants (i.e., NO_x and CO) were strongly dependent upon season

Summary

- PM_{2.5} exhibited a diurnal pattern similar to CO and NO_x; concentrations > 65 μg/m³ were never observed during the mid-afternoon
- High PM_{2.5} concentrations tended to occur on warm, highpressure days; low concentrations tended to occur on cool, windy days with low solar radiation
- PM_{2.5} episode case studies:
 - Cool season (nocturnal temperature inversions)
 - PM_{2.5} concentrations showed strong diurnal variation
 - Strong associations among PM_{2.5}, NO_x, CO, SO₂
 - Enrichment: Zn, Mn, Mg, EC, Ca, Pb
 - Warm season
 - PM_{2.5} concentrations more chronically elevated
 - Associations among PM_{2.5} and gases not as strong
 - Enrichment: SO₄²⁻, NH₄⁺, Ni, Fe, Sn

Publications

- Connell et al. (2004) The Steubenville Comprehensive Air Monitoring Program (SCAMP): Overview and Statistical Considerations, J. Air & Waste Manage. Assoc., in press.
- Connell et al. (2004) The Steubenville Comprehensive Air Monitoring Program (SCAMP): Associations Among PM_{2.5}, Co-Pollutants, and Meteorological Conditions, *J. Air & Waste Manage. Assoc.*, in press.
- Connell et al. (2004) The Steubenville Comprehensive Air Monitoring Program (SCAMP): Analysis of Short-Term and Episodic Variations in PM_{2.5} Concentrations Using Hourly Air Monitoring Data, *J. Air & Waste Manage. Assoc.*, in press.

Funding

U.S. DOE - National Energy Technology Laboratory

Ohio Coal Development Office

Electric Power Research Institute

American Petroleum Institute

National Mining Association

American Iron and Steel Institute

Edison Electric Institute

National Institute of Environmental Health Sciences

U.S. Environmental Protection Agency

CONSOL Energy Inc.

Participating Groups

CONSOL Energy Inc. R&D

Harvard School of Public Health

Ohio University

Franciscan University of Steubenville

Wheeling Jesuit University

St. Vincent College

Optimal Technologies

Air Quality Sciences, Inc.

Control Analytics, Inc.

